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Abstract

We incorporate the Latent Semantic Indexing (LSl) technique
into a competition-based neural network model for information

retrieval. The original neural network model was based on a

causal inference network, incorporating Roget’s Thesaurus, that

connects the index terms and related documents. Since the pmcIess
of creating or updating a thesaurus is rather expensive, we apply the

LSI technique to provide an automated procedure that captures the

semantic relationship between the doctrments and index terms. C)ur

experimental results using four standard text collections show that

the LSI-baaed model generates appreciable improvement in retrieval

effectiveness with faster query evaluation over the thesatrrus-ba~sed

model.

1 Introduction

h conventional information retrieval models, such as the

Boolean models, vector space models, and probabilistic

models, documents and queries are represented by a set

of subject terms or keywords, sometimes with associated

weights. The Boolean models determine the relationship

between a document and a user query by matching ihe

document terms and the exact combination of the search

terms specified in the query. The vector space models

calculate the similarity measures between documents and

the user query based on the term weights which determine

the degree of importance of the terms. The probabilistic

models rank the documents by the probability that each

document would bejudged relevant toa given query [TC91];

the probability is estimated by considering the presence or

absence of certain terms in the document while comparing to

the terms in a user query, together with the information abc~ut

term distribution in the document collection [Sa189].

Since the individual terms and keywords are not adequate

discriminators of the semantic content of the documents

and queries [FLGD87], the performance of the conventional
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retrieval models often suffers tlom either missing relevant

documents which are not indexed by thekeywordsustxl in the

query, but by synonymy or retrieving irrelevant documents

which are indexed by unintended sense of the keywords in

the query [BCB92]. Therefore, there has been great interest

in text retrieval research that is based on semantics matching

instead of strictly keyword matching.

Latent Semantic Indexing (LSI) using Singular-Value De-

composition (SVD) is a particular approach to overcoming

some of the deficiencies of term-matching retrieval tech-

niques. The LSI technique performs truncated SVD to

analyze the conceptual structure of the word usage across

documents [BD94]. Using the singular values and the as-

sociated vectors obtained from the truncated SVD, a high-

dimensional vector space representing term-document asso-

ciations is mapped onto a vector space of a lower dimension

which reflects the major associative patterns in the data, while

ignoring the less important associations. Thus, terms which

occur in similar documents will be near each other in the

reduced vector space, and documents may be retrieved to

satis@ a user query when they share terms that are close in

the reduced space. Since documents are represented in the

reduced vector space by the statistically derived conceptual

indices, instead of by individual words, the LSI technique

overcomes some of the drawbacks of keyword matching

techniques. Also, since the statistically derived vectors are

more robust indicators of the semantic meaning than individ-

ual words, the retrieval performance based on the reduced

vector space may be better than that of the original space

[BCB92, BD94].

Several recent papers report the use of the LSI method in

information retrieval. In ~DFL90], the LSI method equaled

or outperformed the standard vector space method. The

results reported in [Dum91] show that the LSI performance

can be substantially improved using either the differential

term weighting scheme or relevance feedback. h [DN92],

the LSI method was used to automating the assignment

of submitted manuscripts to reviewers of the llj.pertex ’92

conference. Based on the interests of each reviewer, a set of

relevant manuscripts were retrieved and sent to the reviewer,

The results demonstrated that this automated assignment

method achieved better matching between the reviewers
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and their interests, when compared to the assignments
produced ‘by the human experts. In [BCB92], the LSI

meihod was compared to Multidimensional Scaling (MDS)

algorithms. MDS is a class of data analysis techniques

for representing data points in a multidimensional real-

value space. Using MDS, the objects are represented so

that the inter-point similarities in the space match inter-

objeet similarity information provided by the researcher.

The results demonstrate that the document representations

given by LSI are equivalent to the optimal representations

found using MDS. The LSI method was compared to Metric

Similarity Modeling (MSM) [Bar94]. The results show

that the optimal MSM solution is identical to the document

indexing solution provided by LSI. Recently, LSI is applied

to the routing and adhoc retrievals using large collections

in the TREC conferences [Dum94, Dum92, Dum95]. The

results were comparable to the best results submitted to

those conferences. Furthmore, these results demonstrated

that the large, sparse SVD problems could be solved without

concerns for numerical convergence. In [BD94], a survey

of the computation requirements for managing LSI-encoded

databases for information retrieval was presented. Recently,

LSI has also been applied to information filtering and text

categorization [F0190, Hu194, WPW95].

In this paper, we present the technique of incorporating

Latent Semantic Indexing into a neural network model for

text retrieval. The original neural network model was based

on a causal inference network that connects the terms and

related documents. The model also used Roget’s Thesaurus

to relate synonymous index terms [SL94b]. Using four

standard document collections, CACM, CISI, ADINUL, and

CRANFIELD, we demonstrated that the neural network

model’s retrieval performance, in terms of precision and

recall, was comparable to or better than that of the recent

text retrieval models [SL94b]. However, in a thesaurus-

based information retrieval model, the semantic information

embodied is reflected by the terms in its thesauri and the

documents stored in its database [HM86]. When new

documents are indexed and stored in the database, the

indexing vocabulary needs to be updated to account for

the changes in the domain knowledge it covers. Since the

1911 edition of Roget’s Thesaurus we used for constructing

the original model lacks many crucial index terrn$ [SL94a],

and the process of merging or updating thesauri is rathdi

expensive, we incorporated the Latent Semantic Indexiiig

technique into our neural network model, in stead of using a

thesaurus, in an attempt to capture the semantic relationship

between the documents and the index terms. Our results

reported here show that by incorporating the LSI method, the

neural network model generates an appreciable improvement

over the thesaurus-based model.

The remainder of this paper is as follows. Section 2

provides a overview of the Latent Semantic Indexing method

as applied to information retrieval. Section 3 briefly reviews

our original neural network model. Section 4 reports the

experimental results comparing the LSI-based model and

the thesaurus-based model in their retrieval performance.

Section 5 is the conclusion.

2 Overview of the LSI Method

In the conventional vector space models, the representations

of documents and terms are explicitly taken into account for

the result of the retrieval. Using Latent Semantic Indexing
(LS~, which is an extension of the vector space retrieval
method, it is assumed that there is some underlying or
“latent” association in the pattern of terms or keywords
used across documents [DN92], and this latent association
can be estimated by using statistical techniques. Singular-
Value Decomposition (SVD) is a technique closely related
to eigenvector decomposition and factor analysis used in
statistics [CW85], and Latent Semantic Indexing (LSI) using
SVD is a particular approach to modeling the latent semantic
relationships between the documents and the index terms.
This approach performs singular-value decomposition on
a term-by-document matrix, generating a reduced space
with lower dimension. In the reduced space, the semantic
association between two documents is captured based on how
frequently the index terms used in each of the documents co-
occur in other documents. Similarly, the semantic association
between two index terms can be captured based on how
frequently they are used in the similar contexts (documents).
Using the LSI representation, documents are retrieved to
Satisfi a user query when they share terms of similar
semantic meaning. As a result, LSI overcomes some of
the deficiencies of term-matching retrieval, and provides an
automated procedure that relates synonymous index terms
without the need for constructing or updating a thesaurus.
Since the dimension of the resulting semantic space is
typically much smaller than the number of unique index
terms used in a document collection (e.g. 100 to 300 vs.
several thousands [Dum94]), a retrieval model using LSI can
also benefit from requiring less time and memory for query
processing.

We now briefly explain the properties of SVD, and describe
the conversion of document and query representations from
the original vector spaceto the reduced vector space.

2.1 Singular-Value Decomposition (SVD)

It is known that SVD is the most reliable tool available for
matrix factorization [KMS89]. For any matrix A, AT A has

nonnegative eigenvalues. The nonnegative square roots of
the eigenvalues of ATA are called the singular values of
A, and the number of the non-zero singular values is equal
to the rank of A, ranh(A) [Ort87]. If A is an m x n matrix
and rank(A) = r, the singular-value decomposition of A is
defined as

A = UWVT, (1)
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Figure 1: A schema of the thmcated SVD of a term-by-
docur’nentmatrix A.

where the sizes of U, V, and W are, respectively, m x m,

n x ,.n,and m x n; both U and VT are orthogonal matrices,
i.e., UTU = Im, and V@” = L; W i? a diagonal matrix
consists of the singular values of A:

[ 1
q

02

w=
,..

CTpl

CT?

o

The Ui’s are the singular values of A, U1 ~ U2 ~ . . ~ ~ u, ,>

0, ~d Gi =Ofori~r+l.
In order to perform SVD in the LSI retrieval model, a

term-by-document matrix A which represents the documents
in a collection must be constructed. Using SVD, there is a
simple strategy for generating optimal approximation of the
document representation specified by the matrix A. Since the
singular values in W are ordered by size, the first k largest
may be kept and the remaining smaller ones are set to zero.
As a result, the representations of the matrices U, V, and W
can be reduced as follows: 1) Obtain a new diagonal matrix
Wk by removing column and rows which are zeros from W;
2) Obtain a matrix uk by removing the (k + l)st to the mth
columns from U; and 3) Obtain a matrix V~ by removing
the (k + l)st to the t-d rows from V. The product of the
resulting matrices is a matrix Ak which is an approximaticm
of the matrix A (see Eq. 2), and ?’ank(Ak) = k. Figure 1
presents a sche~ of the truncated SVD of matrix A.

The LSI method using SVD can be viewed as a technique
for derivinga setof uncorrelated indexing variables or factors
(i.e. the singular values) [DDFL90]. The documents and
queries are then represented by vectors of factor values,
instead of the individual index terms. The use of the
k-largest factors captures moat of the important latent

associations between documents and index terms, and avoicls

unintended sense in word usage. A more detailed account

of the mathematical properties of SVD can be found in

[Bas94, G0189].
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Figure 2: An example of the connectionist model.

2.2 Document and Query Representations

Using the singular-value decomposition @q. 2), a term-
by-document matrix A is mapped into a reduced k x n
matrix represented by Wk ~, which relates k factors to
n documents. Similarly, a user query q, treated as a single
document m-vector, can be converted into a k-factor vector
q’ using Eq. 3.

q’ = (qTUkW~l)T (3)

3 The Neural Network

The original neural network model was developed based
on the causal inference network described in [PR89]. The
implementation of the original model was explained in detail
in [SL94b]. In this section, we briefly describe the network
structure and the activation mechanism used in the original
model.

The neural network model is a two-layer network (see
Figure 2): the document layer D (output), the index term
layer ‘T (input), and a relation R connecting D and ‘T [PR89].
There are no inhibitory or intra-set links. Based on the
relation R,two sets,e~fects(d~ ) and causes(rj ), are d~ed
for each di E D ~d each Tj G T: e~~ects(di) = {Tj I <
di, Tj > E R}, ~d causes= {di I < Tj, di > c R}.

Intuitively, effects(di ) contains all the index terms caused
by document di, and ca~ses(~j ) contains all the documents
that can cause index term Tj. Each document node di E D

has an activation level at time t during the computation,
denoted di(t) G [0, 1]; each index term node Tj has an
activation level 7-j(t) C [0, 1].

Initially, di (0) = pi, where

1
Pi =

total number of documents’
(4),.

which represents the prior probability that a document di
appears relevant to a given query. Each index term node
Tj E ‘T is marked to be present (~j c ‘T+) if it is present in



the user’s qu~, otherwise, it is marked absent (Tj G T-).
Each link (connection) is associated with a constant weight
representing the approximate implication strength Tij of term
T- on document di:

t fji . idfj
l’~j =

max.tf~ . log(total number of documents)’
(5)

where tfji is the frequency that a t- Tj appears in
a docum~t d~, idfj is the inV~W document fkequency
corresponding to T-j,and m~~~.fi is the maximum tf value
of the index terms in the document di [TC9 1].

To process a user query, the index terms that are present in
the query, or synonymous to any that is present, are marked in
the neural network. (We denote the set of marked index term
nodes ‘T+.) A “winners-take-all” competition algorithm is
then used which iteratively updates the activation levels of
the nodes in T+, followed by updating the activation levels
of the document nodes in D. This process continues until
an equilibrium is reached at time t.,at which point each
di (te) is approximately equal to Oor 1. A subset of the entire
docmt collection, D, = {di I di(te) & 1.0}, is taken

to be the retrieval for a given user query.
We now briefly describe the equations used in updating the

activation levels. Assuming a discrete representation of time,
the index term nodes in T+ are updated using the activation
rule

Tj(t) = 1 – ~ (1 - rijdi(t)). (6)
d; ECatJSe.S(’rj)

To update the activation levels for the document nodes, a
fimction ini (t) indicates the desired direction of change for
di(t) in order to obtain local optimization. ‘The value ini (t)

is determined by the rule

where Ti+ = T+ n ef fects(di ); Ki is a constant
factor representing the influence of ‘T- nodes, and prior
probabilitiespi, on document activations. The constant Ki is
computed once for each document node di at the beginning
of the neural network computation, and is defined by

()Ki= ~ (l–rij) & (8)

T,~T,-

where Ti- = T- n ef f eds(di ). Also, a ramp timction is
used to bound the change rate of di(t) in [– 1, 1]. The ramp
fi.mction f(z) = 1 if z > 1; –1 if z < –1; z otherwise.

Finaily, the activation level di (t) is detlned by the following
equation

di(t + 1) = di(t) + f(in~(t) – 1) . (1 – di(i!)) A, (9)

where A is a constant controlling the rate of change we set it
to O.1. If di(t + 1) islessthan O.Oftom Eq. 9,then di(t + 1)

is setto 0.0. Thus, a desired di (t) is guaranteed to be in [0, 1:
at any time t.

When the computation reaches an equilibrium and outputs
a retrieval set of documents (i.e. those with di(t) % 1.0), wc
often need to rank these documents based on their relevance
to the given query. We used Eq. 10 to compute the documenl
ranking values. The derivation of Eq 10 is described in detail
in [SL96].

4 Experiments and Results

In this section, we explain the construction of the neural
network which is based on the document representation
derived flom SVD. We also explain the method to compute
the precision and recall values in our model, and show the
experimental results and the performance comparisons. We
then derive formulas which estimate the actual time required
for our experiments.

4.1 Network Constnwtion and the Experiments

Since both the theoretical foundation and empirical studies
are important issues in measuring the effectiveness of infor-
mation retrieval models, we used four standard document
collections, CACM, CISI, CR4NFIELD, and ADINUL, to
test the retrieval performance of our original neural network
model [SL96]. In order to compare the performance of the
LSI model with that of the original model, the same docu-
ment collections were used in the experiments reported here.
These collections contain information of the authors, titles,
abstracts, and citations of the axticles published in different
research journals. Each collection consists of a set of doc-
uments and queries. The document-query relevance judgm-
ents are also provided. Table 1 shows the pertinent statis-
tics for these collections. The performance of our LSI model
is also compared with that of a vector space model (SVM)
which uses the cosine measure to estimate the similarity be-
tween the document vectors and the query vectors.

To evaluate the neural network’s retrieval performance
on these document collections, we need to extract the
index terms of each collection and generate a term-by.
document matrix A = [aij] as the initial representation oi
the documents. Only noun index terms are selected frorr
each collection by using Roget’s Thesaurus. The connection
strength values aij in matrix A are computed using Eq. 5.

In a collection of n documents and m unique index terms,
the initial representation of the collection is an m x n matrix,

After the initial matrix is generated, we performed singular-

value decomposition on the matiix to obtain a reduced
matrix of rank k (see Section 2). The choice of the rank
value k is critical to the retrieval performance. Idealy, the
value of k should be large enough to represent the real
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Oueries 150111212251 35

per Query
Average Number of

Relevant Queries 0.1 0.1 0.2 0.5
oer Document

Table 1: Collection statistics.

information in a collection, and also small enough so that
the unimportant details will not be included [DDFL90J
The choice of a proper k value is an open issue in the
literature on Factor Analysis [G0189, Bas94]. However,
the experimental results reported in [DDFL90, Dum94] have
shown that the best results are obtained when 100 ~ k <300
for small collections (e.g. 1000-2000 abstracts) and fcr
large collections (e.g. collections outlined in the TRW

conference). In our experiments, we usedvarious rank values
to test the performance of our networks for each collection.
For the CACM, CISI, and CIL4NFIELD collections, we
used rank values 10, 50, 100, 150, 200, 300, and 400. Fcr
the ADINUL collection, since its initial representation is a
376 x 82 matrix, we used rank values 10, 20, 30,40, 50,
70, and 82. Since computing the truncated SVD of large
term-by-document matrices is very time-consuming, it was
executed once for each collection, and the resulting matrices
U, W’ and V (see Eq. 1) were saved in disk files. These
files were then used to generate the reduced IIMtriCtX Uk, W’k

and Vk for each tested rank value k. The SVD program was
adapted from [PTVF92] and was run on a Sun SparcStatioln
System 600.

For each rank value k, a two-layer neural network is
constructed based on a k x n matrix W~VkT: the document
layer of n document nodes, and the factor layer of k factors.
The WdUe aij of the matrix wk VkT can be viewed as the
connection strength value r~j between a document d~ and
a factor /j. After a neural network is constructed, a given
query is processed and is represented as an m-element vector
q. The query vector q is mapped into a k-factor vector q’ using
Eq. 3. The query vector q’ is then used to mark the k factor
nodes in the neural network. We note that by substituting the
index terms with factors, the equations used in our original
model for computing the index term and document activation
levels (Eqs. 6 and 9) can be adapted to compute the activation
levels of the factor and document nodes, respectively.

h each of the experiments we performed, the neural
network algorithm retrieved aset of documents for eachgiven
query, then these documents were sorted by their ranking
values using Eq. 10. A common approach to evaluating
retrieval performance is to report the precision percentages
at different recall levels. Thus, to compute the retrieval
precision at the idMo recall level, 1< z < 100, we scanned
the list of the retrieved documents in ranking order, using the
correct retrieval set provided by the test collection as basis,
until the dYo recall is met. At that point, the precision value
is calculated as the percentage of relevant documents within
the list of the retrieved documents scanned so far. Since our
model returns a retrieval set of documents for a user query,
instead of ranking all the documents in the collection, there
is one modification required for computing the precision in
our model. It is possible that the ieO/O recall is not met even
after the entire list of the retrieved documents is scanned.
In that case, it is reasonable to report that the corresponding
precision value is zero.

4.2 Results and Performance Comparison

For each test collection, the overall performance was
determined by computing the average precision at 10 recall
points of 0.1, 0.2,..,, 1.0. Our experiment results show
that the neural networks of rank 100 (consisting of 100
factor nodes) outperform the networks using other rank
values for the CISI and CRANFIELD collection+ the neural
network of rank 150 outperforms the networks of other rank
values for the CACM collection and the neural network
of rank 70 outperforms the networks of other rank values
for the ADINUL collection. Figures 3 and 4 plot the
performance comparisons arnongthe LSI model, the original
neural network model with Roget’s Thesaurus, and the neural
network model without Roget’s Thesaurus. For the LSI
model, the figures include the results of three rank values:
the optimal rank, the smallest, and the largest ranks. Figures
3 and 4 demonstrate that the neural network model using
Roget’s Thesaurus outperforms the neural network model
without using Roget’s Thesaurus (asreported in [SL96]), and
the LSI model using the optimal rank value is better than the
neural network model with Roget’s Thesaurus. Therefore,
the semantic association between documents and index terms
can be better represented using the LSI method. Tables 2 to
5 show the percentage changes in precision at different recall
levels when comparing the LSI model (using the optimal
rank) with the original neural network model using Roget’s
Thesaurus,

We also compare the performance of our LSI neural
network model with that of a LSI vector space model using
the cosine similarity measure The performance of the LSI
vector spacemodel was also tested using various rank values
for eaeh collection. The experimental results show that the
optimal rank values for CACM, CISI, CR4NFIELD, and
ADINUL are 200, 200, 100, and 70, respectively. The
comparisons between the optimal performance of our LSI
neural network model and that of the LSI veetor spacemodel
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Recall
10
20
30
40
50
60
70
80
90
100

average

Precision (% change) CACM
original LSI

66.4 71.0 (+6.9)
58.7 62.2 (+5.9) “,
53.0 54.8 (+3.4) ,.,
42.1 47.3 (+12.1)
35.2 39.4 (+1 1.9)
32.4 35.2 (+8.6)
26.5 30.8 (+16.2)
22.7 26.6 (+17.2)
12.6 19.1 (+51.5)
9.9 12.0 (+21.2)
36.0 39.8 (+10.6)

‘fhble 2: Comparison of LSI model (rank 150) and the
thesaurus-based model for CACM.

Recall
10
20
30
40
50
60
70
80
90
100

Precisior
original

52.1
47.7
35.4
25.7
20.2
15.4
16.7
8.5
8.2
6.3

23.7

% change) CISI
LSI

62.4 (+19.8)
57.7 (+21.0)
41.1 (+16.1)
31.7 (+23.3)
28.1 (+39.3)
25.2 (+63,6)
20.8 (+24.6)
14.5 (+70.6)
12.6 (+53.7)
10.1 (+60.3)
30.4 (+28.3)

lkble 3: Comparison of LSI model (rank 100) and the
thesaurus-based model for CISI.

[

Recall
10
20
30
40
50
60
70
80
90
100

average

Precision
Original

54.7
49.6
47.3
46.1
45.0
36.2

33.2
25.4

15.7

13.1

36.6

Y. change) CRANFIELD
LSI

70.7 (+29.3)
67.5 (+36.1)
62.4 (+31.9)
59.2 (+28.4)
55.1 (+22.4)
48.4 (+33.7)
43.1 (+29.8)
28.8 (+13.4)
23.2 (+7.5)
19.1 +(45.8)
47.8 (+30.6)

Table 4: Conmarison of LSI (rank 100) model and the
thesaurus-basedmodel for CR4~IELD. ‘

Recall
10
20
30
40
50
60
70
80
90
100

average

Precision (7. change) ADINUL
Original LSI

34.0 37.1 (+9.1)
33.5 36.5 (+9.0)
33.6 35.1 (+4.5)
31.3 33.1 (+5.8)
31.2 33.0 (+5.8)
16.4 23.4 (+42.7)
13.0 16.2 (+24.6)
12.5 14.2 (+13.6)
9.9 12.7 (+28.3)
9.4 9.9 (+5.4)

22.5 25.1 (+11.6)

Table 5: Comparison of LSI model (rank 70) and
thesaurus-based model for ADINUL.

Recall
10
20
30
40
50
60
70
80
90
100

average

VSM
66.9
58.7
55.2
43.5
33.4
31.2
28.3
22.7
13.0
9.2

Precision (% change) CACM
Neural Network

71.0 (+6.1)
62.2 (+6.Oj
54.8 (–4.0)
47.3 (+8.7)
39.4 (+18.0)
35.2 (+12.8)
30.8 (+8.8)

26.6 (+17.2)
19.1 (+46.9)
12.0 (+30.4)

36.2 39.8 ‘(+9.9)’

the

Table 6: Comparison of LSI neural network model (rank
150) and LSI vector spacemodel (rank 200) for CACM.

[

Recall
10
20
30
40
50
60

70
80
90
100

average

Precision (% change) CISI
Neural Network

62.4 (+9.3)
VSM
58.0
48.5
38.2
26.1
20.1
15.7
13.9
12.1
10.6
9.5

25.3

57.7 (+18.4)
41.1 (+16.1)
31.7 (+28.3)
28.1 (+41.1)
25.2 (+63.6)

20.8 (+51.8)

14.5 (+38.1)

12.6 (+37.0)

10.1 (+12.2)
30.4 (+20.2)

Table 7: Comparison of LSI neural network model (rank
100) and LSI vector spacemodel (rank 200) for CISI.
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Precision (% change) CRANFIELD
Recall VSM I Neural Network

10 65.1 I 70.7 (+8.6)
20
30
40
50
60
70
80
90

59.6
49.3
46.2
44.3
37.2
33.6
24.4
15.9

67.5 (+13.3)
62.4 (+26.6)
59.2 (+28.1)
55.1 (+24.4)
48.4 (+30.1)
43.1 (+43.2)
28.8 (+18.0)
23.2 (+45.9)

100 15.1 19.1 +(26.5)
average I 39.9 I 47.8 (+19.8)

Table 8: Comparison of LSIneural network model (rank 10IO)
and LSI vector space model (rank 100) for CRANFIELD.

01 I
~02030a150 80708093

Red
100

CACM Collection

CISI Collection

Figure 3: Recall-precision graphs.

Recall
10
20
30
40
50
60
70
80
90

Precision (% change) ADINUL
VSM Neural Network
35.0 37.1 (+6.0)
32.5 36.5 (+12.3)
32.5 35.1 (+8.0)
31.0 33.1 (+6.8)
31.2 33.0 (+5.8)
18.4 23.4 (+27.2)
15.0 16.2 (+8.0)
12.1 14.2 (+17.4)
9.5 12.7 (+33.7)

100 9.2 9.9 (+7.6)
average 22.6 25.1 (+11.1)

Table 9: Comparison of LSI neural network model (rank 70)
and LSI vector space model (rank 70) for ADINUL.

,,~1

CRANFIELDWCollection

ADINUL Collection

Figure 4: Recall-precision graphs.
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are reported in Tables 6 to 9. The results show that our LSI
neural network model performs better than the LSI vector
spacemodel.

4.3 Time Analysis

‘l’he experiment for eachcollection includes three procedures:
SW, preprocessing, and query evaluation. For each
collection, the SVD procedure was performed oncq the
preprocesstig and query evalution procedures were executed
once for each k value.

The formulas to estimate the time required for processing
a collection with n documents and m unique index terms are
as follows:

●

●

●

mm

n x cost(U)+ m x cost(VT) + n x cos@V) (11)

Preprocessing

cost(Ak ) + m x n x cod(s) (12)

Query Evaluation (for each query)

t~.~ X COSt(JW)+ NJ X (T.FO X COSt(di) + (13)

DFO X COSt(Tj))

A brief summary of the symbols used in the formulas is given
in Table 10, For the sake of brievity, we only describe the
comparison between the estimated time and the actual time
for the CACM and CISI collections. The result is shown
in Table 11. The computation detail of the cost for each
procedure is not listed.

Based on ‘Ibble 11, we note that the actual time for
preprocessing and query evaluation is on average 6% higher
than the corresponding estimated time for both CACM and
CISI. However, there is a 10’%oand 11’XOdiscrepancy between
the actual SVD processing time and estimated time for
CACM and CISI, respectively. The discrepancy can be
attributed to the system overhead and the inaccuracy in
estimating ~~t~s TFO, D.FO, taug, tic.

5 Conclusion

In this paper, we incorporated the Latent Semantic Indexing
(IS) technique into a competition-based neural network
model for information retrieval. The LSI technique
provides an automated procedure that captures the semantic
associations between the documents and the index terms,
without using a thesaurus. Our experiments using four
document collections demonstrated that the LSI-based model

using optimal rank values outperforms the thesaurus-based
model in retrieval effectiveness. Also, since the LSI model
uses a smaller network, it usually requires less memory
space and query evaluation time. Therefore, our LSI-
based neural network model has the potential to handle
large document collections such as those outlined in the
TREC conferences, Furthermore, since neural network
computations are inherently parallel, our LSI model has the
potential for efficient parallel implementations.

symbol Definition
cost (u) cost for calculating the matrix U (see

Eq. 1)
cost (V’) cost for calculating the matrix P (see

Eq. 1)
cost(w) cost for calculating the matrix W (see

Eq. 1)
cost(Ak ) cost for calculating the reduced matrix

Ak (SIX Eq. 2)
cost (s) cost for initializing a connection strength

(see Eq. 5)
t avg average number of marked index terms
cost (M) cost for marking an index term
NI average number of iterations to reach

equilibrium (22 for both CACM and CISI)
TFO average number of the most connections

linked to an index term node
DFO average number of the most connections

linked to a document node
COSt (?_i ) cost for updating an index term node

activation (see Eq. 6)
Cost(di) cost for updating a document node

, activation (see Eq. 9)

Table 10: Symbols used in formulas for estimating collection
processing time.

Procedure CACM CISI
Estimated Actual Estimated Actual

SVD 65200 72000 52000 57600

I Preprocessing I 482
I

512 I 210 I 224 I
Query Evaluation 195 208 309 324
(entire collection)

Table 11: Comparison (in seconds) between the estimated
time and actual time for collection processing.
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